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ABSTRACT

proaches taken in order to solve the problem.

This thesis examines a two-person zero sum game where a submarine, after revealing
his position by causing a ‘flaming datum’, is hunted by a helicopter which arrives on the
scene after a time delay. Various helicopter and submarine strategies are explored and
simulation runs are uscd to dotermine the detection probability (payoils) for each com-
bination of helicopter and submarine strategy. The value of the game (deteciion prob-
ability) with the reiated optiraal strategies is then obtained using linear prograrnming.
A modified random search equation is also derived using probabilities of detection ob-
tained from different combinations of parameters used in the game. Similar and related
games are also discussed with emphasis on the ditferences in assumptions made and ap-
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I. INTRODUCTION

A. DESCRIPTION OV PROBLEM
A submarine has just fired a torpedo at i ship. scoring a direct hit. This causes the
ship to stop immediatel: and be in Hlames, hence the tern,, flanung” datum. The ship
on being hit immediately sends out distress calls and a sonar carrying helicopter
responds by proceeding towards the ‘flamung’ datum. It arrives on scene after a tinie
delay and thereafter makes repeated active sonar dips within the expanding
farthest-on-circle(FOC). The term FOC is a commonly used search term which describes
all the possible positions within a circle (of area nl'%7), that a target can be, given a top
speed of U. There 1s also a tume delay lor each dip duc to the time required for Jowering
and raising the sonar transponder. The submarine on detecting each and everyv ping
emitted by the helicopter’s sonar reacts so as to munuze his probability of being
detected within the helicopter’s hmited time on station. The game can onlv end in two
wavs; the submarine is found within the helicopter’s sonar range during one of its dips
and hence is detected or the submarine is undetected during the linuted nussion tume of
. the helicopter. We consider an abstract version of this situation charactenized by five
paramcters:
s V - Specd of helicopter
¢ U - Speed of submarine

* D - Time delay in dipping sonar

1, ~ Time for helicopter to reach edge of FOC

R - Radius of sonar detection system

B. BACKGROUND

Search theory in mulitary applications has usually concentrated on the idea of
attempting to find an object by moving a sensor sufficiently close to it. The object has
a definite position in space and the distance between it and the sensor is crucial. Search
theory has evolved from scarching for stationary ta.gets, to moving targets and
presently, to evasive targets. Stationary and moving target problems are normally
classified as one sided problems because the target does not know or make use of the

knowledge of where the searcher 1s. The prescnt emphasis 1s on two-sided problems,




v,

which are more diflicult to solve. These are problems wheie targets wish to avoid
detection , and have the capability to do so.

The theory of Games is naturaily applicable here since this 1s the situation of a
maximizing plaver (scarcher) wishing to maximize a pavoll (for example, the probability
of detecting the targer) and a minimizing plaver (evader) wishing to do the opposite. In
such situations, optimal strategies of both players arc sought after as well as the valuce
of the game where we want to know how best onc side can deny or allow the other side
ar: expected minimum or maximum payofl. One classical two sided game formulated by
Morsc and Kimbal [Ref. 1] involves searching for a submarine that is transiting a
channel of varying width that 1s toc long to allow the submarine to remain submerged
during the entire passage. In his book, "Geometric Games and their Applications’
[Ref. 2] Ruckle considers a <lass of two-sided geometric games  Gal considers two sided
search games playved on networks [Ref. 3], A gocd refereace for bibligographies can bz
found in Dobbie’s survey of Scarch Theory {Ref. d]. This is updated by Washburn's
tutorial on scarch theory where he covers the development of scarch theory up to 1926
[Ref. &)

The author is mterested in the submarine evasion game first considered by Danskin
in which a submarine, after revealing his posiuon by causing a ‘flammng’ datum. is hunted
by a helicopter swhich arnves at the datum after a time delay [Ref. 6). This i1s a special
class of two sided search games where the target has the advantage ol observing the
scarcher’s action. but the scarcher has the advantage of speed. This advantage wili be
slowly lost as search progresses since the various positions that the submarine can
occupy will eapand with time.  Related games are the one-dimensional helicopter
submarine games studied by Memnardi [Ref. 7] and more recently by Baston and Bostock

[Rei. §). Meinardi solves a discrete form of the game while Baston and Bostock solve
the continuous case. Bc-ides Danskin's game, not much work has been done on the two
dimensional case except the work by Thomas and Washburn {Ref. 9] in their paper on

dynanuc search games.

C. APPROACHES

Three solution approaches will be considered:
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1. Analytical

In the next chapter , we will see solutions to related games. The one
dimensional ‘flaming’” datum problem can be solved either by using the methods of
Memardi or Baston and Bostock. However, the one dimensional case is only a special
case where the scarch area can be considered to be a long channel with respect to the
sonar detection radius. Attempts to solve the two dimensional case have not been
clearly successful since additional simplifving assumptions are needed. In Danskin's
game, the assumptions made (he assumes passive search) are clearly to the advantage
of the helicopter. However, in Thomas and Washburn's dipping sonar game, two major
assumptions are made, one that favours the submarine (nimbieness assumption) and
another that does not (remain motionless between dips).

2, Data Analysis
Another wav to solve the ‘flaming” datum problem is 1o collect and analyse real
world data. Such data may or may not be obtained from past wars, conflicts, or even
field exercises. However, such data are few, expensive and difficult to obtain. A
compronuse 1t t¢ conduct a two sided search experiment as was done by Washburn in
his Expanding Area Scarch Experiment. [Ref. 10) However, Washburn's experiment

differs from cwy flaming’

{2

atum problem  The target is assumed to be ‘blind’ with no
knowledge of the scarcher’'s position once the search commences while the searcher is
assumed to be a ship or aeroplaie continuously sweeping an azea. In his experiment,
different groups of WPS students are used as game players. This technique can perhaps
be used as the next stage in our aitempt to solve the ‘flaming” datum problem. The only
disadvantage is that the experiment will take a long time to complete since many
different people are necded.

3. Simulation Methodology
The approach taken here is to build multiple simulation models where Monte

Carlo runs are used 1o determine the ..  n probability when a helicopter uses a
certain straegy against a certain sut © atrategy . Two person zero sum solution
methodology is then used to solve the - oy atrix game. This simple method allows

one to estimate the outcome quickly and rather cheaply as compared to conducting
numerous fleet exercises. It may also act as a starting point for more sophisicated
models. A more detail~d description will be given in the later chapters.




II. RELATED GAMLES

In this chapter, two one-dimensional and two two-Cimensional games related to the
‘flaming datum’ problem will be discussed. These are the games by Meinardi [Ref 7],
Baston and Bostock [Ref. 8], Danskin [Ref. 6] and Thomas and Washburn [Ref. 9]
respectively. The ‘flaming” datum problem can only be formulated as a one dimensional
game (in space) if the search area under consideration involves a long channel such that
the sonar detection sweep width is at Jeast greater than the channel width. Meinardi
[Ref. 7] has sclved a discrete (in time) version of such a game while more recently,
Baston and Bostock [Ref. 8] have solved the continuous version. In all the two
dimensional cases treated so far, many assumptions have to be made in order 1o solve
the game. This is evident in both Danskin's and Thomas and Washburns' games.
General analytical techniques for the two-dimensional game are presently unavailable.

A. ONE DIMENSIONAL GAMES
I. A Sequentially Compounded Search Game
Meinardi [Ref. 7} considers a multi-staged search game where the target is
hiding in a row of n; boxes labelled | to n,. At each stage , the searcher sclects a box
and examines it. The probability of finding the target when the correct box is searched
15 equal to ¢<1.0. If the target is not found, the target mayv either move t0 a

neighbouring box or remain in the same box, and the next stage is plaved. The target
as well as the searcher keeps track of which boxes have been searched. The searcher is

linuted only in the number of boxes 1o be searched, so that the time taken to search a

box or transit between boxes deoes not come into consideration.
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- Figure 1. Boxes for Meinardi's game

At the start of the game. the target is in box 1, (see Figure 1) corresponding

to the datum. A certain time delay may occur before the first search is rnade. The target

B . can therefore be in anv of the first 1, boxes when the first search is made. With each
stage, the number of boxes which may contain the target 1s augmented by one (since the

target is limited by junmiping to neighbouring boxes only). Meinardi {Ref. 7] shows that

the optimal strategies of the scarcher and the target are such that they alway attempt to

B distribute themselves as uniformlv as possible over the number of boxes available. He
also shows that if ¢ exceeds a certain critical value ¢.,,. the target wili not be able to use

such a strategy. In such a case, the target will attempt to distribuie his positional

probability over whatever boxes that he can.

e Meinardi derived the critical ¢ to be
n+l—k
qcnl = k
L where k is the box that is searched when n boxes are available. 1f ¢<gq,,, , the target can

equalize its probability of being in any of the (n + 1) bexes available in the next stage.

Since the smallest value of g, is with k == n, the smallest g, in the game (denoted Gont)

_ 1s given by
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except that ¢, = 1 for a one stage game.

Here n, is the initial number of boxes available at the start of the game and s, is the
number of stages available in the game. It is also useful for us here to reproduce some
of his results. Case 1 shows the result for the case when the critical ¢ value is not
exceeded while case 2 is an example of a case when gq is greater than g,,,

Case I: Two stage game, for a small g.

Let I“:,,) be the value of the game where s+ 1 is the number of stages of the game
remaining and n , the number of boxes availabie (sitnilar notations are also used for the
optimal strategies X and Y).

The value of the game is given by

| q g . o _ o, 9
r(no)z(n—o)_'_(l_n—o-) r("o"l) where r(,,n,l)-( ,10+ 1 ) (21)
weath Antirmanl crentamian >
vvitils Vyl-ullu‘ QL‘“LVEINJ
-1 = 1 i 1
'\("O)z ("0)= [.FO-’—'.I_;, ,‘%’] (22)
) 0 1 1 1
KXog = Yog =1 ] (2.3)

ng+ 1+l 777 ny+

where Xand ¥ represent the distributions of searcher and target positions. In other
words, the searcher is equally likely to search any boxes, and the target moves in such
a manner that he is equally likely to be in any box. In this case, g, = —,;(1)— so the above
results are vahd as long as ¢< %
The case when q > ¢, , is more complicated. We will only show the results for the case
of a two stage game where 1 = 2 (as solved by Meinardi). More detailed denivation can
be found in [Ref. 7). :

6
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. Case 2: Two stage game, ¢ > -;— . Mg=2, 6,,,, = -:I';- ,
7-2q

! —
: To=(575,)7 (24)
l with optimal strategies

g 3 6-2 ,
. Xo=I[ 922, 9 24 Y for the searcher (2.5)

5-2
Ty = [ = 9.1 for the targes (2.6)

[$=77: 977, )

The above resuit shows that both the searcher and target do not equahze their
probability of being in any of the boxes available. This happens because the target is
unable to do so. To illustrate this, consider the case when ¢ = 1 and where box 2 1s
searched in the first stage of the game. Clearly, the target mwusi be in box 1 in the first
- ' stage or else it will be detected. The target is thus unable to move to box 3 at the second
stage since it is imited to moving to neighbouring boxes only. The target can therefore
only move to box 2 or remain in box 1 . If g 1s less than i, then there will be some
probability that the target will not be detected even if the correct box is selected. if the
target is initially in box 2, then there would then be some probability of the target
moving to box 3 in the second stage, but not as much as -]3~ if ¢>4.., . In general, the
target should equalize, as well as it caa, the probability of being in any box.

!_‘ 2. A Helicopter-Submarine Game Cn The Real Line

) Baston and Bostock [Ref. 8] also consider a game very similar to the flaming
N datum problem. Their game can be considered to be a continucus version of Meinardi’s
P game [Ref. 7] since it is again a one-dimensional probiem where the submarine is
F-_ assumed to be moving in a lonug narrow channel. In their game, there 1s one helicopter
! carrying j anti-submarine bombs. The helicopier ( max. velocity V) wishes to destroy
‘ the mobile submarine ( max. velocity U) using its bomb. Each bomb has the same

L_ : destructive radius R and there is « time lag D between the release of the bomb and the
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bomb exploding. The number of bombs is analogous to the number of dips available
and the bomb’s destruction radius is analogous to the sonar radius.

-_ w0 235 |

v - -

1 T _;:
A R —
x=0 x=L

Figure 2. One dimensional helicopter-submarine on the real line .

The notation used in their game i1s illustrated in Figure 2 . The helicopter and
submarine arc initialiv at A and B respectively, distance L apart. If the bomb explodes

swithin dictance R from the cabmarine then the nay vofl 1o the helicon
within distance upmanne then the pa

.......... opter 1 ! vmt:

otherwise, he gets zero. Lach plaver knows the iniual position of the other plaver but
not their subsequent positions. They are sestricted to move at their maximum speed and

instantaneous changes in velocities are allowed. The value of the game, T" 15 given

below:
+ 1
tl, When l—”‘—D—) <R , the value 1s I =1 regardiess of the
- number of bombs that the helicopter is carrving since onlv one bomb is needed. The

helicopter proceeds to point B at its maximum speed and drops his bomb there. The
submarine ¢ould not travel a distance greater than R, given the time the helicopter takes
to get to point B, f‘, . plus the bomb activation time D.

L+
2, When -u—I‘JfV—Ql- > R, the value of the game is given by
| r"-‘("l,:,'). for1<j<k and - B
r=1, fory>k .
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where k is the unique integer greater or equal to 2 which satisfies

UiL + VD) @7

U(L + VD) R <
SU=V-0)+V

k- LK - )+ Vv

When (j = 2) bombs are available to the helicopter, an additional cond:tion is required
in that the time delay must be small , that is, R =2 UD - L The other case where

R < UD - L is still being studied by Bastoa and Bastock.
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Value = j/k

k=3

Figure 3.

Graphical representation of Baston and Bostock
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A graphical representation of the game is shown in Figure 3. The dashed lines show '
the possible positions of the submarine from B. The vertical short solid lines show where a8
the bombs sk:ould be dropped. Note that a feasible submarine track must intersect at g
least one of these intervals. In the above example, k=3 and the value of t"e gamc is

(-';— ). Hence, if j=2, the value of the game is 1 and the submarine is always destroyed.

B. TWO DIMENSIONAL GAMES
1. Helicopter Versus Submarine Search Game

Danskin 'Ref. 6] considers the case where the submarine has only 1 sct of .
strategies, i.e,choose a fixed course 6 (0<0<360°) and speed U (0<UsxUp,) and adhere S
to them throughout the duration of the game. He assumes that the submarine knows
nothing useful about what the helicopter is doing and therefore sees no reason for any S
changes in course or speed once selected. Danskin describes this strategy as the choice |
of a point in the submarine’s ‘speed circle’ of radius Up,(See Figure 4). The submarine
picks this point and stays at it throughout the game. With each dip, the helicopter’s

sonar detection system will cover an area of nR? in real space or an cquivaient area of

in the speed circle at time 7 (see Figure 4 overleaf). He assumes that the helicopter

t:

strategies are to dip at a succession of points in the speed circle such that the

corresponding covered circles do not overlap each other. lence if the dips are at tmes —
. . - l ] ' ’

L, i3, ey L. the helicopter will cut a total area 4, = nR-(-I-,-+-!T+ -’l—-) out of the S

] : A I

speed circle. This is showr in Figure 4 overleaf.

11
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In his game, Danskin proposes that the area , 4, be squeezed into a wedge of the same
area in the speed circle. He solves the game and shows the value to be

[ - nUg = —29; .This is the probability that the helicopter’s wedgs covers the point the
submarine has picked 1n the speed circle given that the orientation of the wedge could
be picked randomly.

Based on Danskin’s assumptions, [Ref. 6] the helicopter has a better chance of
detecting the submarine than in the flaming datum problem. The varicus cookie cutter
sonar dips of the helicopter do not overlap each other. The submarine also does not

employ any evasive maneuvers.

2. Dynamic Search Games

Thomas and Washburn [Ref. 9] have solved a very similar game which they
termed ‘dipping sonar” game. It contiins all the elements of our flaming datum problem
except that the rules of motion for the submarine are revised. In their game, the
submarine s pexmitted to instantly choose any new position after each unsuccessful dip
by the helicopter, as long as he stays within the Farthest - on - Circle (FOC), termed the
“nimbicness” assumption. Another assuniption made is that the submarine remains
moticnless in the speed circle between dips of the helicopter. All these assumptions are
necessary for them to solve the game using Dynanuc Programming. Briefly , the game
is solved using the following recursive equation

QU =min, max) w1~ Y % PY, k TGi0)) QG TG

k

where

® Q)= value of the game , the probability that none of the remaining searches
will detect the target if both sides play optimally. (i,1) represents the state of the
game where the submarine is in cell, 1, and time , t .

e P(j.k,t) = Probability that a target in cell k will be detected by a search of cell j
begun at time t .

® T(iy)= Time at which a search of cell j can begin if a search of cell i begins at
tmet .

The game proceeds in the following fashion:

1. After observing (1,1) the target will choose a cell k to hide while the searcher will
choose a new celi j to search without knowing k.




2. If T(ij,)>1* , the termination time , then the target wins .
Otherwise with probability P(j, &, 7(iy,A)) , the target is detected and scarcher wins.

3. If the target is not detected , set i to ) and t to T(i,3.k) and return to 1.

The solution is obtained recursively with the end state Q(i, ') = 1 for &' >r * and -
with y = (3;) and x = (x,) being probability distribution over the cells for the searcher and
the target respectively. The various positions to be picked by the helicopter and the
submarine are obtained by dividing the speed circle into 1 cells of equal area. Applying
the game to our flaming datum problem, this dynamic search game tends to favour the .
submarine on account of the nimbleness assumption. This favourable condition for the '
submarine might be peutralised by an additional assumption that the submarine is
assumed motionless between dips. Intuitively, it seems that the nimbleness assumption ' .
wouid more than outweigh the motionless assumption.

14
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IIl. MODELS, THEORY AND ASSUMPTIONS
A. ASSUMPTIONS

I. Submarine motion
The submarine 1s assumed to be moving always at a fixed speed U, once it starts

its evasive mancuvers. Instantaneous changes in course are allowed.

2. Helicopter motion
The helicopter s also assumed to be moving at a constant speed V, during its

scarch (or the submarine. Acceleration and retardation are ignored.

3. Sonar Characteristics
The helicopter active sonar is assumed to illuminate a circular area of radius

R, perfectly on each dip. Each dip can thus be considered to be a “cookie cutter’ where

within such a radius, detection is certain and outside it, detection is impossible. Each

PO - - semaa l An #alen v Asarataave ele
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to time taken for the sonar device 1o be winched in and out of the water and ume for the

signal processing unit of the sonar to check for detection.

The submarine is assumed to Kknow the latest position of the helicopter

whenever it pings. However, this assumption was later relaxed to one in which only

B AR SIS

bearing information is known as we later found out that among the strategies explored,

KA

strategies that made use of this position information were dominated by those strategics

which only make use of bearing information.

4. Unit speed circle

Danskin defines the speed circle to be a circle with constant radius U. Inside

v e e E—

this circle, a ‘cookie cutier dip of the helicopter at time t , will have a radius ol’—lli . In
our discussion, we will similarly use the concept of a unit speed circle which is defined
1o be a circle with constant unit radius. In our case, the relative size of a ‘cookie cutter’

sonar dip at time t, will have a radius of -—g;- .

- e w e —— el el
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5. Position of datum

The position of the datum is assumed to be accurately determined. This is defnitely true
when the flaming datum is stll afloat but in the case that 1t is sunk, the last position is
assumed to be accurately known by the helicopter.

B. STRATEGIES USED IN SIMULATION MODEL
1. Submarine Strategies

The submarine has two conflicting goals. One goal is to move away from the
datum as fast as possible and hence expand the FOC rapwdly. This action forces the
helicopter to search in a bigger and bigger arca hence reducing its search effectiveness.
The other goal is to avoid the helicopter as much as it can by moving directly away from
its last position or using some other avoidance strategy. This 1s especially umportant if
the helicopter’s last position (shown by its sonar dips) 1s ncar the submarine’s position
since the helicopter favours picking successive dips nearer to each other as theyv
consume less of i1ts limited nussion time.

In the preliminary studies, several avoidance strategies were explored. One

cheice of two directions will pick the direction that will bring it further from the datumn.
Another strategy involves making the submarine move on a course that is almost
perpendicular to the last two dips of the hehcopter to ensure that it does not cut across
the assumed path of the helicopter {using the direction of the last twe dips as the
helicopter course).  Boih of these strategies were found to be dominated by other
strategies discussed and were thus discarded. In these cases, it seems that the submarine
is making too many unnecessary changes of course and appears not to be moving much
distance across the FOC. Another strategy has the submarine move directly towards the
nelicopter’'s last dip. This strategy was not used because it is difficult to establish the
range to adopt this strategy. There is also a suspicion that this will only have a negligible
cffect on our results.

Aflter some exploration, the number of strategies were reduced to the fellowing
two classes of simple avoidance strategies:

e Submarine moves directly away from the Jast dip.




e Submarine ignores the last dip and proceeds directly away © . the flaming datum.
This strategy can be employved even if the search is passit

It is also uncertain whether the submanne shoulc .¢ on the edge of the FOC
at time t,, since the helicopter may search at the edge. Th: submaiine can perhaps
remain near the datum and stact moving after the helicopter’s first dip. Hence, we will
also include r, as another parameter for the submarine to choose 1 its strategy where
ry 1s the radial distance of the submarine from the datum in the speed circle at ume ..

The submarine strategies are thus defined to be s = ( r,, avoidance sirategy).

2. heiicopter Strategy

Jn building the sets of strategies to be employed by the helicopter, an important
principle is that the helicopter must not adopt any strategy which has a fixed paitern
that can be exploited by the submarine. In Washburn's Expanding Area Scarch
Experiment {Ref. 10}, game participants found out that using fixed search patterns like
sniralling inwards or outwards fron: the datum are not gc d strategies since they can
be exploited oy the submarine. Random movements are thus used 1o ensurc that the
SULILALE Caiinol exXploit anv o

From some cf the analvtical results discussed in related games, we saw that the
helicopter should always attempt to distribute its search efforts as uniformiv as possible
over the entire FOC to be searched. This is done on the assumption that the submarine
can be anvwhere in the speed FOC. [owever this randomization of the positions of the
dip 15 ‘expensive’ for the helicopter. The helicopter has a limited mission time and two
dips placed far apart wil' consume much of this limited time . It will be more eflicient for
the helicopter to search within a localized area by carefully placing non-overlapping dips.
This again may not be optimal since the submarine may be located at some distance
away from the helicopter localized search arca and thus cannot be detected at all. The
helicopter has to compronuse between conducting randomized search and localized
scarch.

Another factor to consider is whether the hel'copter should search on the edge
of the FOC rather than the interior. If it is known that the submarine is always moving
away from the datum, clearly the optimal strategy for the helicopter is also to search on
the edges. The amount of edge searches to be used will also be included in the strategy
of the helicopter.
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To be precise, the helicopter at various timies undertakes local searches that are

either in the interior (inside) or on the edge of the FOC. The local searches are a

succession of dips that are designed to be efficient at covering either its edge or its

interior. To avoid the possibility of concentrating too much effort on a small part of the

FOC , the neiicopter occasionally abandons what he is doing and starts again. These

moments when a new local search is started are called ‘restarts’. The probability that a

restart occurs after each dip is a constant (P(Restart)) that is part of the helicopter

strategies. After each restart , the helicopter chooses a new interior point with

probability, P(interior), otherwise a new edge point , and begins making another Jocal

search until another restart. The helicopter’s first local search is always of the interior

tvpe , and since the location of the first dip is especially important , 7, (the radial location

of the first dip in the spced circle) i1s aiso included as part of the helicopter strategy.

Although an early dip will correspond to having a smaller FOC, some advantage will

also be lost since the position is also near the edge and some of the area covered by the

sonar detection area will be wasted outside the FGC. Using the unit speed circle, r, can

vary from 0 to 1.0. In our simulation model, pure strategics & for the helicopter are thus

defined in terms of various combination of r,, P(Restart) and P(interior) .

h = (r, P(Restart), Plinterior))

A simple way of determining the relationship of times between successive dips

of the helicopter i5 to use the concept of the unit speed circle. If the helicopter chooses

a new point (X,v) in the unit speed circie from its previous position (x,y) at time t, let U

be the time that he arrives there. Travelling the physical distance from (xy)Ut to
Hag¥ Ut = (X' a)UT |
of %

(x',y )Lt requires 2 ume Therefore, £ must satisfv the

equation

(xQ) Ut~ (X", yYUI'|
Vv =1

r+ D+ 3.1

Equation (3.1) can be rearranged to obtain Equation (3.2), a quadratic equation in r'.

’ l‘: ’ ¢ L". ¢
(z+D-:)’=|(x,y)—V—r-(x,y)—V—:|’ (3.2) .
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Solving the equation (3.2), we have i
, d—abc+e
[ =(————), where '
I-b i
a= \/xz -i-yz -%—
il :
b=yx 2 +y 2 v

¢ = cosine [angle between 'xy, and 'x'y'j]

d=1+2 .
{ M
Vo
l=a'+b'd - a'bi(l - %) — 2abed -
Notice that l’— is independent of t when D = 0 and the relationship between t and t' is

i

g s

multiplicative. | o
1
}

C. GAME THEORY .
To formulate our scarch problem as a two-perscn zero sum game, we define the pure b
strategies used by the helicopter to be k = (r,,P(Restart), Plinterior)) and that used by ﬂ
the submarine to be s = (r,, avoidance type) The payoll in this game is the probability
of the submarine being detected , P,(h,s) . The helicopter, being the maximizing player, .

will attempt to achieve ’

;
max, min, P,(A,s) i
While the submarine, being the minimizing player, will attempt to do the opposite by o
achieving , .".

min, max, P,{h,s)

19
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The value of the game v, is thus given by

min, max, F{hs) < v < max,min, Pgfh,s) (3.3)

D. MODIFIED RANDOM SEARCH EQUATION

In his Expanding Area Search Experiment, Washburn considers the case of an
evader who knows that he is spotted at time t and maneuvers away at speed U to evade
detection. The searcher starts the search after a time delay , 7, using speed V and sweep
width w (Detection occurs when the target is within -% from searcher ). He shows that
the probability of detection obtained in his experimental results is closely approximated

by the equation

Py=1 —~ ¢ I (w“) (3.9)
-1 - e[ Et] (3.5)

The assumptions used to derive the equation are .
® Scarcher searches randomlv, which is a crucial assumption

¢ Detections in non-overlapping time intervals are independent

. . . Iwdt
The formula is derived by reascning that e d is the ratio of area searched in dr to
i T
| area of farthest-on-circle at time 7. and is therefore the detection probability during the

infimtisimal iterval dr . Summing over the entire search period we obtain the averay

number of detections in (t,, ) as

|

”(')‘Jﬂ Ve, =_‘_::1‘_,[_____] for 1> 1, (3.6)

el al?

; From the assumptions above, the number of detections in (,,t) is a Poission random
) variabie and the probability of no detection is therefore equal to e . The probability i

of detection is therefore | — "7 as given in Equations (3.5).

Our flaming datum problem is different from Washburn'’s search experiment in that:

) 1. The searcher does not have a continucus search capabibity. ’

20




2. The target knows the position of the searcher whenever he makes a sonar dip.
We can derive a similar equation for our problem but modified to be

_ [ seaqrch_rare .
FP;=1=—¢ ), FOCaea ™ (3.7

e!.!ecnve d'E area

_ " _tume per look) gt
=]—¢ Jr’ FOC avea (38)

The “time per look” represents the average amouni of time between any two successive
dips of the helicopter. it can be reasoned to be equal to D + Il/ + ko LJ ). D
represents the dipping time which is a constant in our game while &, and k, represent the
amount of ‘flying around’ the helicopter makes in covering the FOC. Since -1-17?— is the
time taken to fly across half of the FOC, &, therefore measurces the average amount of
coverage of the entire FOC. The value of its upperbound is 2.0 which repesents the

situation where the helicopter is always flying across and aiong the diameter of the FOC.

k, is introduced because the helicopter must flyv some fraction of its detection radius
before making the next dip to avoid redundant coverage. The FOC area is given by

nL2r? and the expressian redices 10

effecnve dip ared

(R kg )
D= k(37 kot 37 19)

Py=1—e¢ EX) o (3.9)

We also introduce k, to account for inefliciencies in covering the FOC area with circles,
and k, because search wili sometimes start after 7,, the time the helicopter re--ches the
edge of the FOC. The final expression is thus given below:

hymR?
, (D~ k(B r- £y
Pd= 1-2¢" .[r,*k.(—%) nli? a (310)

where
e L - submarine speed

¢ V. helicopier speed

21




e R - cookie cutter radius

¢ D - time delay in dipping

¢ T,= (-E%l—;) - time at which helicopter reaches edge of FOC.

The quantity

kynR?
o = 3.11)
(D + ki 57) + k)0
is analogous to the search rate given by Vw in equations (3.4) to (3.6).
n(r) in our modified equation is therefare given by
' kym R’
n(2) =J R = ———dr (3.12)
W R qUMD + k() + k(7))
Performing the integration, we get:
kR
n(i) = 3 R [ 1 - -:—
VD +k(3) Lot + k()
U (3.13;

ks [ (D + k(B + k() + A5 ]
- - 0

Lo+ k(R L ot k(B + kB + 30

The value of our search game should be approximately P, if & &, k; and %, are chosen
to make equation (3.10) fit the simulation data as closely as possible.

22
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V. METHCDOLOGY

A. SIMULATION MODEL

Simulation models were used to determine the detection protability for each pair
of helicopter-submarine strategies at each time t (r, < ¢ < * ). Multiple programs
were written since the submarine strategies cannot be easily generalised in a single
program. Each program consisted of all the helicopter strategies and a single type cf
submarine strategv. The source codes are written in FORTRAN and implemented in the
IBM 3033. The flow charts for the programs are found in appendix A. A total of 5000
runs are done for each program in order to obtain a precision of at least 10 % for small
(1.04) probability of detection estim:ates. The coeflicient of variation is given by

| 0 =£)
standard _deviation _ n - /_
P N

niean =

. 4.1
np

™ . ] E IR » SHURNL N REDUILIE SRR Py P (RO SR S Ui,
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conducted to get the probability of detection estimate

"

\ X,

B. SOLVING THE GAML

The detection probabilities (or pavoffs) from the various outputs of the various
simulation models are read intc a payvofl matrix using a simple FORTRAN program for
each time ¢ (r>1,) . These payoff matrices for each time t are then solved sequentially
using a linear programming subroutine DDLPRS available in New IMSL Library. If
x=(x,) and y=(y,) represents the probability distribution for the helicopter and
submarine strategies respectively , and v is the value of the game, the linear program can

be formulated as

Minimize v subject to
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Z Vi Palhs) s v, Yo (4.3)

2 h=l (4.4)

The primal of the LP solution gives the mixed strategies of the submarine while the dual
solution gives the solution of the helicopter. Optimal strategies and the value of the
game are cbtained for given values of U,V, 1,, R and 1. A Flow chart for the program
is also given in Appendix B.

C. MODEL FITTING
Although, the Random Search Equation (3.10) has five parameters, there are
actually three dimensions in that expression. This can be easily seen by subctituting

4

%’, ) and -QRL> . Hence, only 2° =8 combinations of dimensions are requircd ‘10

.x('l,,,,,,,,,y—- lR into Equaticn (3.10) where we obtain the dimensions to be |z, + —+ l' ) ,

itted by the Randem Search Equation. The vaines
of the various game matrices obtained at each time t, are then used to estimate the
constants k;, k, and k; and &, . The curve fitting is done using a GRAFSTAT routine
{non- linear regression curve f{itting) available in NPS 1BM 3023, Individual curves for
each set of (7, , L, V, R, D) are fitted to get estimate of &, , &, , ky and k, . These curves
are then combined 10 get one overall estimate for the unknown parameters. Statistical

analysis 1s then performed to check the goodness of the fi:.

D. COMPARISON WITH DYNAMIC SEARCH GAME MODEL

The values of the probabiaty of detection obtained is then compared with the results
given by th2 Dynamic Search Game by Thomas and Washburn [Ref. 9). The results of
the Dynamic search game was computed using a Fortran program developed by

Washburn.
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V. RESULTS

A. TABLES
1. Sirategies Used
A total of 10 submarine and 27 helicopter strategies were explored in the final

stages of our experimentation. They are listed in Tables 1 and 2 respectively.

Table 1. SUBMARINE STRATEGIES USED

strategy r, Avoidance type
» 0.2 Avoid helicopter
A 0.4 Avoid helicopter
n 0.6 Avoid helicopter
Ve 0.8 Avoid helicopter
¥ 1.0 Avoid helicopter
e 0.2 Avoid datum
1~ 0.4 Avoid datum
1y 0.¢ Avoid datum {
¥ 0.8 Avoid datum | T
Yio 1.0 Avoid datum
Note

¢ Avoid helicopter refers to the strategy of moving directly away from the
helicopter’s last dip.

¢ Avoid Datum refers to moving directly away from datum (centre of FOC)




Table 2. HELICOPTER STRATEGIES USED

strategy r P (Restart| search type) P (interior search})
X 0.25 0.25 0.25
X, 0.28 0.25 0.5
X3 0.25 0.25 0.75
X4 0.25 0.5 0.25
x5 0.25 0.5 0.5
X 0.25 0.5 0.75
Xz 0.25 0.75 0.25
s 0.25 0.75 0.5 ]
Xq 0.25 0.75 0.75
X0 0.5 0.25 0.25
X 0.5 0.25 0.5
xXy; 035 0.25 0.75
X3 0.5 6.5 0.25
X 0.5 0.5 0.5
X\ 0.5 0.5 0.75
X4 0.5 0.75 0.25 . om
X 0.5 0.75 0.5 i
X)g 0.5 0.75 Q.75
Xjo 0.75 €25 0.25 i
X3 0.73 0.25 0.5
X3 0.75 0.25 Q.75
X1 0.75 0.5 0.25
X33 0.75 0.5 0.5
X 0.75 0.5 0.75
Xa3 0.75 0.75 0.25
X 0.75 0.75 0.5
X 0.75 0.75 0.75

2. Parameters Used
The various sets of parameters used are given in the Table 3 This is the -

minimt 1 number of sets of parameters required to check if the simulation mode] could
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be approximated by the random search equation (3.10). Notice that normalized values
are used where R and V are both equated w0 1.0. This is done in order to simplify the

expression used in the non-linear package.

Table 3. PARAMETERS USED

U vV T, R D
0.1 1 25.0 1 2
0.1 1 25.0 1 0
0.2 1 22.9 i 2
0.2 ! 229 1 0
0.1 ] 21.8 1 2
0.1 1 21.8 1 0
0.2 1 20.0 1 2
0.2 1 20.0 1 0

3. Simulation Results
For a given set of of V,U, 1, ,D and R, simulation results were obtained for the
above combinations of submarine-helicopter strategies shown above. A sample outpui
of one such result 1s shown in Table 5 of Appendix C. The result shows the probability
ol detection for each time t where r,<i<t®. A total of 270 data sets were generated for

each set of parameter values.

4. Ganie Results
The value of the game together with the optimal strategies was then obtained

by solving each 27 x 10 game matrix for each time t, (r,<1<r*). A sample output for a

particular game is shown in Table 6 as Appendix D. The entire pracess was repeated

seven more times to obtain results for eight different sets of (U, V., .R,D) . A sample

output is shown in Table 7 as Appendix E.

5. Results of Curve fitting
The values obtained from the eight sets of parameter values are then used to

estimate one overall estimate of the unknown &, k, k, and &, of Equation (3.10). The

OO
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y estimated K's as well as a statistical sumuary of the fit is shown in Table 4 below.
:
l Table 4. STATISTICAL SUMMARY
TABLE OF COEFFICIENTS .
628 OBSERVATIONS  R-SQUARED = 0.99281 STANDARD ERROR = 0.01886% '
% COEFFICIENTS ADJ R-SGUARED = 0.99278 6 ITERATIONS
0.95 CONFIDENCE LIMITS .
COEFFICIENT ESTIMATE  STD ERR T STAT SIG LEVEL LOWER UPPER
K1 0.00021092  2.9360E-9 71889 0 0.00021091  0.00021093
K2 0.83762 1.1686E-5 71675 0 0.8376 0.83765
K3 1.0146 3 3727€-3 300.82 0 1.008 1.0212
Ké 0.19498 2.5286E-6 77112 0 0.19498 0.19499
;\
B. GRAPHS

1. Simulation data and Fitted Curves
The values cf the games {or the eight sets of (U,V, 7,,R,D) are shown in Figure
! (5) and (6). The continous curves represent the curves fitted using non-linear regression
' while the svmbols are actual data from the simulation results. Each curve represents a
particular sct of paramter valucs, and all the eight fitted curves use the same &, A3, k3 and
k..
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Figure 5.  Probability of Detection Curves
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2. Random search versus Dynamic Search Medel
In Figure (7) cverleaf, the numbers represent the results from the Dynamic
search model while the symbols shows the data from the simulation model. The fitted
curves are also drawn in the figure. The parameters used are also shown in the legend
just below all the curves. The four random search model curves were just reproduced
from Figures (5) and (6) above.
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Figure 7.

Comparison of Results from Random Search and Dypamic Search Game
Models
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VI. ANALYSIS OF RESULTS

A. STRATEGIES
1. Submarine
The results for the optimal strategies of the submarine show that the submarine
generally favours staying near the edge of the FOC whenever it utilizes the class of
strategies of moving away from the helicopter’s last dip. The other class of strategies of
ignoring the helicopter and just moving away from the datum is not often used. 1f 1t is
used, the results shows that the submarine favours staying near the datum and will start
moving away once the helicopter search begins.

2. Helicopter
The results show that the hclicopter optimal strategies are mainly to have a
higher porportion of localized interior search. It seems that too miuch ‘flying around’ is
not optimal as only a limited number of dips can be conducted in the iimited mission
time of the helicopter. Also, it seems that much effort should be placed on searching the
. interior of the FOC, though some search must still be allocated te searching the edges
so as to deter the submarine from staying at the edge of the FOC.

B. MODEL FITTING

The detection probability (or value of the game) was well estimated by the values
obtained using the non-linear regression software in GRAFSTAT. The correlation
cocfficient s found to be close to 1 and there is no statistical evidence to indicate that
these unknowns do not contribute to the equation at all.

e P e——

These esumated values also give us an idea on the wayv optimal searches are
conducted. k; is approximately zero which shows that the helicopter need not fly a
minimum fraction of its detection radius to its next dip. The value of &, is about .83.
This is fairly close to the mean distance of any two points in a c'-cle as given by Kendall
in his book, ‘Geometric Probability’ { Ref. 11]. The exact value of the mean was denived
to be (-Lj%-) =.905R. This shows that the helicopter was picking points fairly s
uniformly over the FOC. £, is almost equal 1o 1 and this shows that the helicopter was
fairly effectively in covering the FOC area with its cookie cutter circles. This could be

because most of the dips occur in the interior of the FOC. &4 1s approximatcly 0.2 which

sy -y oo
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shows that most of the initial dips of the helicopter occurs near but not at the edge of
the FOC.

C. COMPARISON WITH RESULTS OF DYNAMIC SEARCH GAME i

The results given by the Dynamic search game gives a more pessimistic estimate of
the probability of detection as compared to the simulation results. Generally, the results : -
! are about .07 to .15 lower. This shows that the ‘nimbless” assumption used in the '
' Dynamic search game outweighs the ‘motionless between dips’ assumption. There is 1
also a greater difference when the value of D is zero. It is not clear which result 1s better o
since they dc not difler very much.

D. WEAKNESS
The general weakness of this method is in not being able to investigate enough of

the strategies. There are infinitely many strategies that can be used by the helicopter and

submarine. However, many of them will tend to be dominated by certain classes of

strategies. The assumptions used to derive the random search equation for the

helicopter can again be criticized with the same argument as those used with any random

scarch model. An example is the independent detections in non-overlapping intervals. D

. ' The submarine motion is assumed constant except for instantaneous changes in

. course. This assumption is not important since the submarine is always moving slowly
and its turning radius is small relative to the detection radius of the active sonar. In the
simulation, the subniarine is able to determine the bearing of the dips accurately. This

- is obviously optimistic as to the direction finding capability of the submarine. The

model could later be modiiied to account for transnidssion losses or other factors that

will not provide such an accurate bearing of the sonar dips. The cookie cutter model is

also a basic model for anyv detection system. Enhancement can perhaps be included but

R not much utility can be gained since the model itself is crude just like any other random

search model.
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VII. PRACTICAL USES/APPLICATION

A. COMPARISON OF AIRCRAFT AND HELICOPTER PERFORMANCES

The usefulness of such a technique is that it could be used together with other search
games such as the Dynamic Search Games by Thomas and Washburn or The Helicopter
Search Game by Danskin to compare aircraft platforms that have different speeds, 'y
different distances to datum and detection performances. For example, helicopters are : -
normally located near the impending threat and are normally close to the {laming datum
(if any) while aircraft like the P-3 Onon (carrying scnobouys) are usually located much

further away but have greater speed. The question is which platform performs better.




Whi FASD DI

Vill. CONCLUSION

The results of this experiment is yet another approximated solution to the two
dimensional flamung datum problem. The randem search equation (3.10) developed
using the unknowns derived from the simulation can be used to compute a rough
estimate of the search capability of a helicopter starting its search or it can similarly be
used by a submarine to assess its probability of being detected. The computation can
be done easilv and quickly and it can also give us an idea of the various interactions of
the basic parameters of any scenario. The results given by the Dynamic search game
also support the simulations results. The atiitude to be taken is that this is a practical
tool to use until something better comes along or when general analytica! techniques
become available.

The expioration of various strategies used by both helicopter and submarine is also
very useful as we discover that certain classes of strategies were alwavs dominated by
other classes. However, the optimal strategies obtained in the study cannot be taken as
the ‘true’ optimal strategies to be used since there are infinitely many more to be
explered. Rather, the resuits should provide us some 1dea of the distribution of search
efforts (helicopter) or hiding eflorts (submarine) especially when there are conflicting
goals.
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APPENDIX A. FLOW CHART OF SIMULATION PROGRAM
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Figure 8.  Flow chart for simulation program
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APPENDIX B. FLOW CHART FOR SOLVING MATRIX GAME
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Begin )

Read in Data from
various helicopter - submarine
output data files into arrays

|
|
Y
P Sett =1,
Inttialize Game Matrix
forumet
Call External Subroutine DDLRPS
to sclve LP
]
Wrnite Game
. Values .
. Qutput /
Sett = t.\*l
i
! Figure 9.  Flow chart for solving matrix game using two person zero sum
' methodology v
) s
i
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APPENDIX C. SAMPLE OUTPUT FROM A SIMULATION MODEL

Table 5. SAMPLE OUTPUT FROM A SIMULATION MODEL
. 000000000E+00
. 000000000E+00
. 000000000E+00
.999993791E-02
.399999991E-01
.799999833E-01
.899999738E-01
. 999999642E-01
. 129999995

. 139999986

. 159999967

. 169999957

. 169999957

. 179999948

. 209999979

. 219999969

. 229999959

. 250000000

. 259999990

. 269999981
.279999971
.279999971

. 289993362

. 309999943

. 309999243

. 309999943

. 309999943

. 319999993

. 319999993

. 329999983

. 329999983

. 339999974
.339999974

. 339999974

. 339999974

. 339999974

. 339999974

. 339999974

. 339995974

. 339999974

. 339999974

. 339999974

. 339995974

. 339999974

. 339999974

. 339999374

OCOOOOOOOOOOOOOOOOOOOOOOOOOSDOOOOOOOOOOOOOC’OOOOO
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. 339999974
. 339999974
. 339999974
. 339999974
. 339999974
. 339999974
. 339999974
. 339999974
. 339999974
. 339999974
. 339999974
.33%99%997¢
. 339999974
. 339999974
. 339999974
. 339999974
. 339999974
. 339999974
. 339995974
. 339999974
. 339999974
. 339999974
. 339999974
.339999974
. 339699974
. 339999974
. 339999974
. 339999974
.339999974

ST  0.750000000

1.00000000
100. 000000
1. 00000000
26.8292694

PAREA 0. 750006000 R 1. 00000000

0. 100000024 20.90000000 0. 000000000E+00

27.5000000 0. 250000000 0. 000000000L+00

Note: The output above are the detection probabilities obtained for each tme t
(25<1<100) when the helicopter utilizes strategy x, against the submarine strategy y; The

time of the first dip was computed to be 26.829. This is because the initial dip was inside

the FOC.

The parameters used in this model are given below:
»  V=1,U=.1,D=0,:*=100,L=275,R=10,rn=025,rn=10,
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APPENDIX D. SAMPLE OUTPUT AFTER SOLVING A GAME

Table 6. SAMPLE OUTPUT OF VALUE AND OPTIMAL STRATEGIES OF

3 GAME WITH TIME
TIME 50
OBJECTIVE = 0.5218
PRIMAL
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

0.0000 0.0994 0.0000 0.7453 0.1553 0.0000 0, 0000 0.0000 0.0000 0. 0000

X1 X2 X3 Xé X5 X6 X7 X8 %9
0.00C0 ©.0000 0.0000 J.0000 0.0000 0.0000 D.0000 0.0Q00C 0.0000

X1C X1l X12 X1i3 X14 X15 X16 X17 X18
G, 0000 0.0000 0.2112 0.0000 0.0000 0.0000 0.0000 €.0000 0.0000

X19 X290 X211 {22 X23 X264 X25 b ¥4 Xz7
0. 0000 0.0000 0,3975 0.0000 0.0000 0.3913 0.0000 0.0000 0.00090

Note: The output is for the case when tinic of detection is 50 time units. The parameters
used in this model is given below:

e "=

e U=

¢ D=0

¢ * =100

¢ R=10

¢ L=275giving 1, =23
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APPENDIX E. SAMPLE OUTPUT OF GAME VALUES VERSUS TIME

Table 7. SAMPLE OUTPUT OF GAME VALUES OBTAINED

Time of Value Time of Value Time of Value
Detection (Prob. of Detection (Prob. of Detection (Prob. of
Detection) Detection) Detection)
25 0.0000 51 0.5243 77 0.5833
26 0.0339 52 0.5307 78 0.5872
27 0.1157 53 0.5350 79 0.5890
28 0.1600 54 0.5357 89 0.589]
29 0.1800 55 0.53062 81 0.5891
30 0.2558 56 0.5362 32 (.3900
31 0.2676 57 0.3302 83 0.5919
2 0.3176 58 0.5405 84 0.5392]
33 0.3276 39 0.3307 85 0.5933
34 0.3650 60 0.5407 86 0.3976
35 0.3727 61 0.54438 87 0.3970
36 0.3969 62 0.5490 88 0.5970
37 0.4151 3 (.549]1 89 0.5994
3 0.4298 04 0.5399 90 0.5994
39 0.3354 65 0.5575 91 0.3994
30 0.45d0 60 0.5033 92 0.6040
41 0.4396 67 0.5686 93 0.6040
42 0.4679 68 0.5723 94 0.6082
43 0.4787 69 0.5734 95 0.6089
443 0.4803 70 0.5753 96 0.6089
43 0.4837 71 0.3753 97 0.6104
46 0.4963 72 0.5753 98 0.6104
a7 0.4971 73 0.5754 99 0.6108
a8 0.5059 74 0.5761 100 0.6108
49 0.5150 0.3761
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